Deprecated: Creation of dynamic property GoogleMapModule::$notice is deprecated in /home2/valefr71/toywing.com.br/wp-content/plugins/bb-ultimate-addon/modules/google-map/google-map.php on line 48
O Teorema de Bernoulli - Aeromodelismo
blank width clip image013

O Teorema de Bernoulli

O Teorema de Bernoulli

Bernoulli foi um ‘cientista’ que além de estudar cálculo diferencial e integral entre outras coisas, enunciou a lei que diz: ‘quanto maior for o fluxo de ar que passa por uma determinada superfície, menor será a pressão a que essa estará submetida’.

Image5

Isso ocorre por que o com o ar em movimento sobre a superfície da água, promove a diminuição da pressão que o liquido está submetido. Assim a água tende a ‘voar’.

Esse trabalho elaborado por Bernoulli, foi responsável por grande parte da evolução da aeronáutica. Nada mais que promoveu o inicio da realização de um dos sonhos mais antigos do homem, VOAR.

O Arrasto

A força conhecida como arrasto é aquela causada pela resistência e pela turbulência do ar.

Para melhor ilustrar: quando você estiver andando com seu carro em uma auto estrada, tente colocar a mão para fora da janela. Você irá observar que ela tenderá ficar para trás.

Outro exemplo clássico do efeito da resistência do ar é : em algum dia de ventania, observe um pequeno zunido vido dos fios de alta tensão. Esse barulho se deve ao ar em turbilhonamento.

Puxando o assunto para os aviões, podemos observar que, em seus projetos, tendem a minimizar o arrasto. Pois o intuito é minimizar o turbilhonamento.

Pois produz o mínimo de arrasto, o mínimo de turbilhonamento de ar. Já na figura abaixo, alterando o angulo de ataque, altera-se o arrasto. Isso por que o angulo de ataque também influencia na sustentação do aerofólio. Se ele for muito grande , a tendência é o turbilhonamento do ar, causa o stol(perda de sustentação). Note-se que o ângulo de ataque é o ângulo que a linha de comprimento da asa faz com a horizontal (por exemplo, quanto mais um avião se inclina para cima, maior é o seu ângula de ataque. Se ele permanece na horizontal, seu ângulo de ataque fica próximo a zero).

Retomando o exemplo do fio de alta tensão, nessa figura podemos entender o que realmente acontece.

Para evitar o turbilhonamento do ar na superfície da asa, adota-se a forma de carenagem arredondada, para que como na figura acima o turbilhonamento ocorra na parte posterior do aerofólio, isto é, o perfil que nós conhecemos de asa é esse pois ele ‘força’ o ar a se deslocar sobre a superfície de forma natural como se essa estivesse apenas ‘cortando’, procurando manter o ambiente como era antes, sem turbulência.

Note que pela figura abaixo, que a velocidade do ar no extradorso (em cima) é maior que no intradorso (embaixo). Mas a velocidade do ar no final do aerofólio tende a ser igual se otimizado o arrasto.

Muitas pessoas sempre acharam que esse desenho feito nas nuvens era devido as turbinas ou ao deslocamento de ar das hélices dos aviões. Mas não, isso ocorre pelo turbilhonamento que ocorre na asa.

Por que otimizar o arrasto (o volume , a sustentação e o bordo de ataque):

As aeronaves são classificadas em:

  • De transporte carga;
  • Alto desempenho;
  • Acrobáticas;
  • Etc.( pois o resto não irá nos interessar).

Na confecção de uma aeronave, leva-se em conta o fim que essa aeronave irá tomar.

Para uma aeronave de transporte, devido seu tamanho o arrasto produzido pelo bordo de ataque é compensado pela sustentação gerada pela asa. Podemos observar que a diferença da distância que o ar percorre no extra pelo intradorso é relativamente grande, pois assim o ar deverá ‘correr’ mais no extra do que no intradorso, pois só assim poderá existir uma diferença de pressão entre a parte superior da asa com a parte inferior, e possíbilitando o vôo. Em alguns casos essa diferença de velocidade chega a 25%.

Quanto maior for a velocidade do ar, maior será o atrito cinético do escoamento sobre a superfície; o que acarreta um aumento de temperatura no aerofólio. Observe os vetores gradientes que indicam a pressão sofrida nesses pontos.

 Isso acarreta um numero considerável de problemas na construção de uma asa, como: Que material pode suportar tais diferenças de pressão, ter a flexibilidade suficiente para não partir em uma sobre carga de pressão e ainda não deformar pelo aquecimento causado pelo atrito do ar?

Para os Militares, que por natureza não desejam ser detectados pelos radares infravermelhos do inimigo, promovem pesquisas que envolvem milhões de dólares para evitar esses problemas, pois por voarem em situações críticas isso seria muito prejudicial. Veja o caso abaixo, aeronaves de menor bordo de ataque são mais difíceis de serem detectadas (como: T-38 e F-16) em relação aos de maiores como o TU-95. (asdistâncias estão em milhas náuticas/km). Image14

Image23

Fonte: http://www.ime.unicamp.br/~calculo/mostra/alunos/pedros/apresentacao.htm

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Rolar para cima